We are exploring new opportunities in electronic and optoelectronic materials by conducting fundamental studies on their interactions with biological systems and the natural environment.
The Tian group is pioneering advancements in photoelectroceuticals and living bioelectronics by investigating the molecular-nano interface between biological systems and electronic and optoelectronic materials. Our work emphasizes innovative material synthesis and the development of biocompatible, sustainable, and multifunctional bioelectronic devices that enhance human well-being and have far-reaching global impact. We focus on three primary objectives:
First, we aim to integrate semiconductor structures into living biological systems, emulating cellular behavior and augmenting biological processes with sustainable electronic components. By embedding inorganic materials into cellular frameworks, we explore how single cells interact with these artificial components, leveraging their unique electronic and optoelectronic properties, including bioorthogonality, to gain precise control over cellular functions.
Second, we are developing cutting-edge biophysical tools for real-time, high-resolution control and monitoring of subcellular dynamics. Our goal is to create minimally invasive, multifunctional biointerfaces that enable seamless intracellular and intercellular recording and modulation. By overcoming traditional challenges, such as the rigidity and size limitations of conventional probes, we are designing flexible biointerfaces that integrate effortlessly with soft biological tissues, enabling enhanced electrophysiological studies.
Finally, we are designing adaptive, electronics-based materials inspired by biological systems, with a focus on life-like behaviors and sustainability. By mimicking biological functions such as homeostasis and environmental adaptability, we explore how electronic and optoelectronic systems can replicate dynamic control and environmental responsiveness.
Our work not only pushes the boundaries of bioelectronics but also aligns with a vision of sustainability, human health, and global impact, advancing scientific innovation for the betterment of society and the environment.
Fudan University, Shanghai, China
B.S.
2001
Fudan University, Shanghai, China
M.S.
2004
Harvard University
A.M.
2007
Harvard University
Ph.D.
2010
Massachusetts Institute of Technology and Children’s Hospital Boston
Postdoctoral Scholar
2012
University of Chicago
Assistant Professor
2018
University of Chicago
Associate Professor
2021
University of Chicago
Professor
Present
C. W. Yang, P. J. Li, C. Wei, A. Prominski, J. C. Ma, C. X. Sun, J. P. Yue, Z. Cheng, J. Zhang, B. Ashwood, W. Li, J. Y. Shi, K. Hou, F. Y. Shi, P. Griffin, L. H. Jin, B. Z. Tian, A bioinspired permeable junction approach for sustainable device microfabrication. Nature Sustainability, 2024, DOI:10.1038/s41893-024-01389-5.
J. Y. Shi, S. Kim, P. J. Li, F. Dong, C. W. Yang, B. Nam, C. Han, E. Eig, L. L. Shi, S. M. Niu, J. P. Yue, B. Z. Tian, Active biointegrated living electronics for managing skin inflammation. Science, 2024, 384, 1023-1030.
P. J. Li, J. Zhang, H. Hayashi, J. P. Yue, W. Li, C. W. Yang, C. X. Sun, J. Y. Shi, J. Huberman-Shlaes, N. Hibino, B. Z. Tian, Monolithic silicon for high-spatiotemporal translational photostimulation. Nature, 2024, 626, 990-998.
X. Huang, L. Y. Meng, G. Cao, A. Prominski, Y. F. Hu, C. W. Yang, M. Chen, J. Y. Shi, C. Gallagher, T. Cao, J. P. Yue, J. Huang, B. Z. Tian, Multimodal probing of T cell recognition with hexapod heterostructures. Nature Methods, 2024, DOI: 10.1038/s41592-023-02165-7.
J. Y. Shi, Y. L. Lin, P. J. Li, P. Mickel, C. X. Sun, K. Parekh, J. C. Ma, S. Kim, B. Ashwood, L. Y. Meng, Y. Q. Luo, S. Chen, H.-M. Tsai, C. M. Cham, J. Zhang, Z. Cheng, J. A. Abu-Halimah, J. W. Chen, P. Griffin, E. B. Chang, P. Král, J. P. Yue, B. Z. Tian, Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics. Nature Chemical Engineering, 2024, 1, 73–86.
Y. L. Lin, X. Gao, J. P. Yue, Y. Fang, J. Y. Shi, L. Y. Meng, C. Clayton, X.-X. Zhang., F. Y. Shi, J. J. Deng, S. Chen, Y. Jiang, F. Marin, J. T. Hu, H.-M. Tsai, Q. Tu, E. W. Roth, R. Bleher, X. Q. Chen, P. Griffin, Z. H. Cai, A. Prominski, T. W. Odom, B. Z. Tian, A Soil-Inspired Dynamically Responsive Chemical System for Microbial Modulation. Nature Chemistry, 2022, DOI: 10.1038/s41557-022-01064-2.
A. Prominski, J. Shi, P. Li, J. Yue, Y. Lin, J. Park, B. Z. Tian, M. Y. Rotenberg. Porosity-based soft-hard heterojunctions enable leadless optoelectronic modulation of tissues. Nature Materials, 2022, 21, 647–655.
Y. Fang, A. Prominski, M. Y. Rotenberg, L. Y. Meng, H. A. Ledesma, Y. Lv, J. P. Yue, E. Schaumann, J. Jeong, N. Yamamoto, Y. W. Jiang, B. Elbaz, W. Wei, B. Z. Tian, Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nature Nanotechnology, 2020, 16, 206–213.
Y. Fang, E. Han, X.-X. Zhang, Y. W. Jiang, Y. L. Lin, J. Y. Shi, J. B. Wu, L. Y. Meng, X. Gao, P. J. Griffin, X. H. Xiao, H.-M. Tsai, H. Zhou, X. B. Zuo, Q. Zhang, M. Q. Chu, Q. T. Zhang, Y. Gao, L. K. Roth, R. Bleher, Z. Y. Ma, Z. Jiang, J. P. Yue, C.-M. Kao, C.-T. Chen, A. Tokmakoff, J. Wang, H. M. Jaeger, B. Z. Tian, Dynamic and programmable cellular-scale granules enable tissue-like materials. Matter, 2020, 2, 948-964.
B. Z. Tian, Nongenetic neural control with light. Science, 2019, 265, 457.
Y. W. Jiang, X. J. Li, B. Liu, J. Yi, Y. Fang, F. Y. Shi, X. Gao, E. Sudzilovsky,R. Parameswaran, K. Koehler, V. Nair, J. P. Yue, K. H. Guo, Y. Fang, H.-M. Tsai, G.Freyermuth, R. C. S. Wong, C.-M. Kao, C.-T. Chen, A. W. Nicholls, X. Y. Wu, G. M. G. Shepherd, B. Z. Tian, Rational design of silicon structures for optically-controlled multiscale biointerfaces. Nature Biomedical Engineering, 2018, 2, 508-521.
R. Parameswaran, J. L. Carvalho-de-Souza, Y. W. Jiang, M. Burke, J. F. Zimmerman, K. Koehler, A. Phillips, J. Yi, E. Adams, F. Bezanilla, B. Z. Tian, Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nature Nanotechnology, 2018, 13, 260-266.
J. F. Zimmerman, R. Parameswaran, G. Murray, Y. C. Wang, M. Burke, B. Z. Tian, Cellular uptake and dynamics of unlabeled free standing silicon nanowires. Science Advances, 2016, 2, e16010139.
Y. W. Jiang, J. L. Carvalho-de-Souza, R. C. S. Wong, Z. Q. Luo, D. Isheim, X. B. Zuo, A. W. Nicholls, I. W. Jung, J. P. Yue, D.-J. Liu, Y. C. Wang, V. De Andrade, X. H. Xiao, L. Navrazhnykh, D. E. Weiss, X. Y. Wu, D. N. Seidman, F. Bezanilla, B. Z. Tian, Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 2016, 15, 1023–1030.
Z. Q. Luo, Y. W. Jiang, B. D. Myers, D. Isheim, J. S. Wu, J. F. Zimmerman, Z. A. Wang, Q. Q. Li, Y. C. Wang, X. Q. Chen, V. P. Dravid, D. N. Seidman and B. Z. Tian, Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.
American Institute for Medical and Biomedical Engineering
2023
The Raymond and Beverly Sackler International Prize in Chemistry
2023
The runner-up of Science & PINS Prize for neuromodulation
2019
Chemical & Engineering News' "Talented Twelve"
2017
ETH Materials Research Prize for Young Investigators
2017
NIH New Innovator Award
2016
ONR Young Investigator Award
2016
Presidential Early Career Award for Scientists and Engineers (PECASE)
2016
Alfred P. Sloan Fellowship
2016
AFOSR Young Investigator Program Award
2015
Searle Scholars Award
2013
National Science Foundation CAREER Award
2013
TR35 honoree, MIT Technology Review
2012
A breakthrough by Bozhi Tian lab enables greener microfabrication
Bozhi Tian, UChicago scientists invent ultra-thin, minimally-invasive pacemaker controlled by light
Bozhi Tian lab's pacemaker innovations spotlighted by ASME
UChicago PME Spotlights Tian Lab's latest publication in Nature
Bozhi Tian creates Spinning, Magnetic Micro-robots to Help Researchers Probe Immune Cell Recognition