Chuan He Professor

Born Guizhou, P. R. China, 1972.
University of Science and Technology of China (USTC), B.S., 1994.
Massachusetts Institute of Technology, Ph.D., 2000.
Harvard University, Postdoctoral Fellow, 2000-2002.
University of Chicago,
Assistant Professor 2002-2008.
Associate Professor 2008-2010.
Professor 2010-
Director, Institute for Biophysical Dynamics, 2012-
Investigator, Howard Hughes Medical Institute (HHMI), 2014-
John T. Wilson Distinguished Service Professor, 2014-

Accolades

2015 American Association for the Advancement of Science (AAAS) Fellow.
2015 Arthur C. Cope Scholar Award.
2012 Mr. and Mrs. Sun Chan Memorial Award in Organic Chemistry.
2010 American Chemical Society Akron Section Award.
2010 Society of Biological Inorganic Chemistry Early Career Award.
2008 Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease Award.
2007 CACPA Distinguished Junior Faculty Award.
2006 Camille Dreyfus Teacher-Scholar Award.
2005 CAREER Award from the National Science Foundation.
2005 Cottrell Scholar by the Research Corporation.
2005 Arnold and Mabel Beckman Foundation Young Investigator.
2005 Alfred P. Sloan Research Fellowship.
2004 W. M. Keck Foundation Distinguished Young Scholar in Medical Science.
2004 G&P Foundation for Cancer Research Young Investigator.
2003 Research Corporation Research Innovation Award.
2003 Searle Scholar Award.
2001 Davison Prize for The Best Thesis in Inorganic Chemistry, MIT.
2000-2002 Damon Runyon-Walter Winchell Cancer Research Fund Postdoctoral Fellow (Harvard).
1997-1999 Merck/MIT Graduate Fellowship.
Guest Professor, University of Science and Technology of China (USTC).
Guest Professor, Nanjing University of Technology.
Guest Professor, Chinese University of Hong Kong.
Guest Professor, Sun Yat-sen University.
Honorary Professor, Guizhou University.
Joint Professor, Peking University.

OFFICE: GCIS 319B, 929 East 57th Street, Chicago, IL 60637

PHONE: (773)702-5061

FAX: (773)702-0805

E-MAIL: chuanhe@uchicago.edu

WEB: http://he-group.uchicago.edu

RESEARCH INTERESTS:

Our research program spans a broad range of chemical biology, nucleic acid chemistry and biology, epigenetics, cell biology, bioinorganic chemistry, structural biology, microbiology, and genomics. We probe the pathways and mechanisms of nucleic acids modification and demodification. We study virulence and antibiotic resistance regulation in human pathogens. We also study selective metal ion recognition and sensing by naturally occurring and engineered proteins, and live-cell imaging of metal ions and other small molecules such as H2S, heme, and CO.


1. Reversible RNA Methylation: towards RNA Epigenetics

Cellular RNAs contain more than a hundred structurally distinct post-transcriptional modifications at thousands of sites. Some RNA modifications are dynamic and may have critical regulatory roles analogous to those of protein and DNA modifications. Understanding the scope and mechanisms of dynamic RNA modifications, thus, represents an emerging research frontier in biology and medicine. The internal N6-methyladenosine (m6A) modification in messenger RNA is one of the most abundant RNA modifications in eukaryotes. This base modification is present in 3-5 sites on average of every mRNA in mammals. Deletion of this ubiquitous modification leads to apoptosis in mammalian cells and arrests development of plant cells. Yet, the functional role of m6A in mRNA has never been elucidated. We have shown for the first time that m6A in mammalian mRNA is oxidatively demethylated in vitro and inside cells by FTO (fat mass and obesity-associated protein), a major obesity factor. This and other results from our laboratory indicate the presence of a new mode of biological regulation through reversible RNA methylation in mammalian cells, which we plan to establish as a new paradigm of RNA biology.


2. DNA Methylation, Hydroxymethylation, and Oxidative Demethylation
DNA is not merely a combination of four genetic nucleobases, namely, A, T, C, and G. It also contains modifications that play crucial roles throughout biology. For example, 5-methylcytosine (5-mC), the fifth DNA base which is also a crucial epigenetic mark, constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions. Recently, the presence of oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), have been discovered in mammalian cells and tissues as the sixth, seventh, and eighth DNA bases. A group of iron(II)/αKG-dependent dioxygenases, the TET proteins, have been shown to utilize dioxygen to oxidize 5-mC to these new base modifications in the mammalian genome. These discoveries strongly indicate 5-hmC as another vital epigenetic mark that plays broad roles in gene regulation, and 5-caC/5-fC as intermediates in active DNA demethylation processes. We have been working on developing effective sequencing technology to dissect the exact functional roles of these newly discovered DNA base modifications.


3. DNA Repair and Protein-DNA Interactions
Accumulation of genetic changes due to unrepaired DNA lesions can lead to cancer and other diseases. One component of our research program is to develop and apply a novel chemical cross-linking technique to stabilize protein-DNA interactions in distinct states in these systems. An integrative approach uniting chemical synthesis, structural biology and biochemical/biophysical characterization is used to study these interactions in DNA/RNA repair AlkB family proteins and other DNA/RNA base repair and modification proteins.


4. Virulence and Antibiotic Resistance Regulation in Human Pathogens
Staphylococcus aureus and Pseudomonas aeruginosa are human pathogens responsible for most wound and nosocomial infections. The extensive use of antibiotics to treat infections has led to the emergence of high-level resistances in various strains of these pathogens. Virulence suppression provides an alternative strategy to effectively reduce pathogenic potential without asserting selective pressure for developing drug resistances. A recent discovery in our laboratory has identified the MgrA protein as a key virulence regulator in S. aureus. This protein belongs to the MarR family of transcriptional regulators that controls antibiotic resistance and virulence in various bacteria. We demonstrated that the mgrA knockout strain shows a 10,000-fold reduction of virulence in vivo. Subsequently, we discovered that oxidative stress leads to dissociation of MgrA from its promoter DNA. The host immune response to S. aureus infection is to produce reactive oxygen and nitrogen species to counter the pathogen. Our study suggests that the microorganism uses MgrA and related regulatory proteins to sense the oxidative stress response generated by the host and regulate a global defensive response. We plan to fully elucidate the underlying virulence regulation pathways, and exploring strategies to suppress S. aureus virulence by targeting virulence regulation. We are also studying MgrA homologues in S. aureus, P. aeruginosa and other pathogens. Our ultimate goal is to develop new strategies for treating infections.


5. Selective Metal Ion Recognition by Proteins
The ability to regulate essential or toxic metal ion concentrations is critical for cell survival. Our goal is to understand how specific metal ions are recognized and regulated in biological systems. We have been working on elucidating the mechanisms of proteins that exhibit remarkable selectivity toward metal ions such as lead(II), cadmium(II), gold(I), copper(I) and iron(II). Some of these proteins can be converted into genetically encoded fluorescent probes for sub-cellular metal ion imaging in live cells. We also work on engineering proteins that possess high sensitivity and selectivity toward various metal ions including actinides, and developing probes for imaging of cellular small molecules. p>


Selected References

Wang, X.; Lu, Z.; Gomez, A.; Hon, G. C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; Ren, B.; Pan, T.; He, C.* N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505, 117-120.

Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C.* A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 2014, 10, 93-95.

Song, C. X.; Szulwach, K. E.; Dai, Q.; Fu, Y.; Mao, S. Q.; Lin, L.; Street, C.; Li, Y.; Poidevin, M.; Wu, H.; Gao, J.; Liu, P.; Li, L.; Xu, G. L.; Jin, P.*; He, C.* Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming. Cell, 2013, 153, 678-691.

Zheng, G.; Dahl, J. A.; Niu, Y.; Fedorcsak, P.; Huang, C.-M.; Li, Charles J.; Vågbø, Cathrine B.; Shi, Y.; Wang, W.-L.; Song, S.-H.; Lu, Z.; Bosmans, Ralph P. G.; Dai, Q.; Hao, Y.-J.; Yang, X.; Zhao, W.-M.; Tong, W.-M.; Wang, X.-J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, Hans E.; Klungland, A.*; Yang, Y.-G.*; He, C.* ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol. Cell. 2013, 18-29.

Yu, M.; Hon, G. C.; Szulwach, K. E.; Song, C.-X.; Zhang, L.; Kim, A.; Li, X. K.; Dai, Q.; Shen, Y.; Park, B.; Min, J. H.; Jin, P.*; Ren, B.*; He, C.* Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome. Cell, 2012, 149, 1368-1380.

Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Yang, Y.-G. and He, C.* “N6-methyladesosine in nuclear RNA is a major substrate of the obesity-associated FTO” Nat. Chem. Biol. 2011, 7, 885-887.

He, Y.; Li, B.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; Sun, Y.; Li, X.; Dai, Q.; Song, C.-X.; Zhang, K.; He, C.; Xu, G.* “Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA” Science, 2011, 333, 1303-1307.

Ito, S.; Shen, L.; Dai, Q.; Wu, S. C.; Collins, L. B.; Swenberg, J. A.; He, C. and Zhang, Y.* “Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine” Science, 2011, 333, 1300-1303.

Song, C.-X.; Szulwach, K. E.; Fu, Y.; Dai, Q.; Yi, C.; Li, X.; Chen, C.-H.; Zhang, W.; Jian, X.; Wang, J.; Zhang, L.; Looney, T. J.; Zhang, B.; Godley, L. A.; Hicks, L. M.; Lahn, B. T.; Jin, P.* and He, C*. “Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine” Nat. Biotechnol., 2011, 29, 68-72.

Yi, C.; Jia, G; Hou, G.; Dai, Q.; Zhang, W.; Zheng, G.; Jian, X.; Yang, C.-G.; Cui, Q.; He, C.* “Iron-catalysed Oxidation Intermediates Captured in a DNA Repair Dioxygenase” Nature, 2010, 468, 330-333.